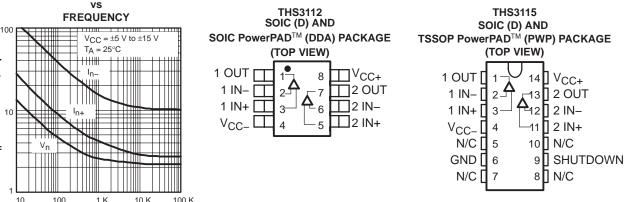


SLOS385 - SEPTEMBER 2001

LOW-NOISE, HIGH-SPEED CURRENT FEEDBACK AMPLIFIERS

FEATURES

- Low Noise
 - 2.9 pA/VHz Noninverting Current Noise
 - 10.8 pA/\sqrt{Hz} Inverting Current Noise
 - 2.2 nV/\sqrt{Hz} Voltage Noise
- Wide Supply Voltage Range ± 5 V to ± 15 V
- Wide Output Swing
 - 25 V_{PP} Output Voltage, $R_I = 100 \Omega$, ±15-V Supply
- High Output Current, 150 mA (Min)
- **High Speed**
 - 110 MHz (-3 dB, G=1, ±15 V)
 - 1550 V/ μ s Slew Rate (G = 2, ±15 V)
- Low Distortion, G = 2 – -78 dBc (1 MHz, 2 V_{PP}, 100-Ω load)
- Low Power Shutdown (THS3115) - 300-uA Shutdown Quiescent Current Per Channel
- Thermal Shutdown and Short Circuit Protection
- Standard SOIC, SOIC PowerPAD[™], and **TSSOP PowerPAD™ Package**
- **Evaluation Module Available**


VOLTAGE NOISE AND CURRENT NOISE

APPLICATIONS

- **Communication Equipment**
- Video Distribution
- Motor Drivers
- **Piezo Drivers**

DESCRIPTION

The THS3112/5 are low-noise, high-speed current feedback amplifiers, ideal for any application requiring high output current. The low noninverting current noise of 2.9 pA/ $\sqrt{\text{Hz}}$ and the low inverting current noise of 10.8 pA/\sqrt{Hz} increase signal to noise ratios for enhanced signal resolution. The THS3112/5 can operate from \pm 5-V to \pm 15-V supply voltages, while drawing as little as 4.5 mA of supply current per channel. It offers low -78-dBc total harmonic distortion driving 2 Vpp into a 100- Ω load. The THS3115 features a low power shutdown mode, consuming only 300-uA shutdown quiescent current per channel. The THS3112/5 is packaged in a standard SOIC, SOIC PowerPAD™, and TSSOP PowerPAD packages.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments.

SLOS385 - SEPTEMBER 2001

AVAILABLE OPTIONS

PACKAGED DEVICE					EVALUATION.
TA	SOIC-8 (D)	SOIC-8 PowerPAD (DDA)	SOIC-14 (D)	TSSOP-14 (PWP)	EVALUATION MODULES
0°C to 70°C	THS3112CD	THS3112CDDA	THS3115CD	THS3115CPWP	THS3112EVM
-40°C to 85°C	THS3112ID	THS3112IDDA	THS3115ID	THS3115IPWP	THS3115EVM

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage, V _{CC+} to V _{CC-}	
Input voltage	
Output current (see Note 1)	
Differential input voltage	$\ldots \ldots \pm 4 \ V$
Maximum junction temperature	150°C
Total power dissipation at (or below) 25°C free-air temperature	. See Dissipation Ratings Table
Operating free-air temperature, T _A : Commercial	
Industrial	40°C to 85°C
Storage temperature, T _{stg} : Commercial	–65°C to 125°C
Industrial	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The THS3112 and THS3115 may incorporate a PowerPAD[™] on the underside of the chip. This acts as a heatsink and must be connected to a thermally dissipating plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction temperature which could permanently damage the device. See TI Technical Brief SLMA002 for more information about utilizing the PowerPAD[™] thermally enhanced package.

DISSIPATION RATING TABLE						
AL^{Θ}	T _A = 25°C POWER RATING					
95°C/W‡	1.32 W					
67°C/W	1.87 W					
66.6°C/W‡	1.88 W					
37.5°C/W	3.3 W					
	^θ JA 95°C/W [‡] 67°C/W 66.6°C/W [‡]					

DISSIPATION RATING TABLE

[‡] This data was taken using the JEDEC proposed high-K test PCB. For the JEDEC low-K test PCB, the θ_{JA} is168°C/W for the D-8 package and 122.3°C/W for the D-14 package.

recommended operating conditions

		MIN	NOM MAX	UNIT
	Dual supply	±5	±15	v
Supply voltage, V _{CC+} to V _{CC-}	Single supply	10	30	V
	C-suffix	0	70	
Operating free-air temperature, T _A	I-suffix	-40	85	°C
	High level (device shutdown)	2		
Shutdown pin input levels, relative to the GND pin	Low level (device active)		0.8	V

SLOS385 - SEPTEMBER 2001

electrical characteristics over recommended operating free-air temperature range, T_A = 25°C, V_{CC} = ±15 V, R_F = 750 Ω , R_L = 100 Ω (unless otherwise noted)

dynamic performance

	PARAMETER		TEST CONDIT	ONS	MIN TYP MAX	UNIT
		D: 400.0	R _F = 1 kΩ,	$V_{CC} = \pm 5 V$	95	
		R _L = 100 Ω	G = 1	V _{CC} = ±15 V	110	1
DW	Small-signal bandwidth (-3 dB)	D. 400.0	R _F = 750 Ω,	$V_{CC} = \pm 5 V$	103	
BW		$R_{L} = 100 \Omega$ $G = 2$ $V_{CC} = \pm 15 V$		110	MHz	
	Denduidth (0.4 dD)		R _F = 750 Ω,	$V_{CC} = \pm 5 V$	25]
	Bandwidth (0.1 dB)		G = 2	V _{CC} = ±15 V	48	1
			V _O = 10 V _{PP}	$V_{CC} = \pm 15 V$	1550	
SR	Slew rate (see Note 2), G=8	G = 2 RF = 680 Ω		$V_{CC} = \pm 5 V$	820	V/µs
		11F - 000 32	V _O = 5 V _{PP}	$V_{CC} = \pm 15 V$	1300	
	Sattling time to 0.1%		$V_{O} = 2 V_{PP}$	$V_{CC} = \pm 5 V$	50	
t _s	Settling time to 0.1%	G = -1	$V_{O} = 5 V_{PP}$	$V_{CC} = \pm 15 V$	63	ns

NOTE 2: Slew rate is defined from the 25% to the 75% output levels.

noise/distortion performance

	PARAMETER		-	TEST CONDITIO	NS	MIN	ТҮР	MAX	UNIT
				R _F = 680 Ω,	V _{O(PP)} = 2 V		-78		
THD	Total harmonic distortion		$V_{CC} = \pm 15 V_{,}$	f = 1 MHz	V _{O(PP)} = 8 V		-75		dBc
	Total narmonic distortion		G = 2,	R _F = 680 Ω,	V _{O(PP)} = 2 V		-76		uвс
			$V_{CC} = \pm 5 V$,	f = 1 MHz	V _{O(PP)} = 6 V		-74		
Vn	Input voltage noise		V _{CC} = ±5 V, =	±15 V	f = 10 kHz		2.2		nV/√Hz
	land to mant as is a	Noninverting Input					2.9		pA/√Hz
In	Input current noise	Inverting Input	V _{CC} = ±5 V, =	±15 V	f = 10 kHz		10.8		ра/унг
	One estalle		G = 2,	f = 1 MHz,	$V_{CC} = \pm 5 V$		-67		JD -
	Crosstalk		$V_{O} = 2 Vpp$		$V_{CC} = \pm 15 V$		-67		dBc
	Differential rais error		G - 2	R _I = 150 Ω	$V_{CC} = \pm 5 V$	0.	.01%		
	Differential gain error		40 IRE modul		$V_{CC} = \pm 15 V$	0.	.01%		
	Differential shape error		±100 IRE Rar	•	$V_{CC} = \pm 5 V$	0.	.011°		
	Differential phase error		NTSC and PA	NL	$V_{CC} = \pm 15 V$	0.	.011°		

SLOS385 - SEPTEMBER 2001

electrical characteristics over recommended operating free-air temperature range, T_A = 25°C, V_{CC} = ±15 V, R_F = 750 Ω , R_L = 100 Ω (unless otherwise noted) (continued)

dc performance

	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
	han it affect includes		$T_A = 25^{\circ}C$		3	8	
	Input offset voltage		$T_A = full range$			13	
VIO	Channel affect voltage metabling	$V_{CC} = \pm 5 V,$ $V_{CC} = \pm 15 V$	$T_A = 25^{\circ}C$		1	3	mV
	Channel offset voltage matching		T _A = full range			4	
	Offset drift		T _A = full range		10		μV/°C
	Input high ourrant		$T_A = 25^{\circ}C$			23	
	- Input bias current		T _A = full range			30	
1		V _{CC} = ±5 V, V _{CC} = ±15 V	$T_A = 25^{\circ}C$		0.33	2	A
IВ	+ Input bias current	$V_{CC} = \pm 15 V$	T _A = full range			3	μA
	Innut effect oursent		$T_A = 25^{\circ}C$		4	22	
	Input offset current		T _A = full range			30	
Z _{OL}	Open loop transimpedance	$V_{CC} = \pm 5 V,$ $V_{CC} = \pm 15 V$	$R_L = 1 \ k\Omega$,		1		MΩ

input characteristics

	PARAMETER TEST CONDITIONS		MIN	TYP	MAX	UNIT	
V		$V_{CC} = \pm 5 V$	T full records	±2.5	±2.7		V
VICR	Input common-mode voltage range	$V_{CC} = \pm 15 V$	T _A = full range	±12.5	±12.7		V
		$V_{CC} = \pm 5 V,$	$T_A = 25^{\circ}C$	56	62		
CMRR	Common-mode rejection ratio	$V_I = -2.5 \text{ V}$ to 2.5 V	$T_A = full range$	54			dB
CIVILLE	Common-mode rejection ratio	$V_{CC} = \pm 15 V,$	$T_A = 25^{\circ}C$	63	67		uВ
		$V_{I} = -12.5 \text{ V}$ to 12.5 V	$T_A = full range$	60			
D.		+ Input			1.5		MΩ
RJ	Input resistance	– Input			15		Ω
Ci	Input capacitance				2		pF

output characteristics

	PARAMETER	TE	ST CONDITIONS		MIN	TYP	MAX	UNIT
			$R_L = 1 \ k\Omega$,	$T_A = 25^{\circ}C$		3.9		
		$G = 4, V_I = 1 V,$ $V_{CC} = \pm 5 V$	D. 100.0	$T_A = 25^{\circ}C$	3.6	3.8		
N-		VCC - ±0 V	R _L = 100 Ω,	T _A = full range	3.4			
VO	Output voltage swing		$R_L = 1 \ k\Omega$,	$T_A = 25^{\circ}C$		13.5		V
		$G = 4, V_I = 3.4 V,$ $V_{CC} = \pm 15 V$	D 400.0	$T_A = 25^{\circ}C$	12.2	13.3		
		VCC = ±10 V	R _L = 100 Ω,	T _A = full range	12			
		$\label{eq:G} \begin{array}{l} G=4,V_{I}=0.9\;V,\\ V_{CC}=\pm5\;V \end{array}$	RL = 25 Ω,	т осоо	100	130		
10	Output current drive	$G = 4, V_I = 1.7 V, V_{CC} = \pm 15 V$	RL = 25 Ω,	T _A = 25°C	175	270		mA
r _o	Output resistance	open loop				14		Ω

SLOS385 - SEPTEMBER 2001

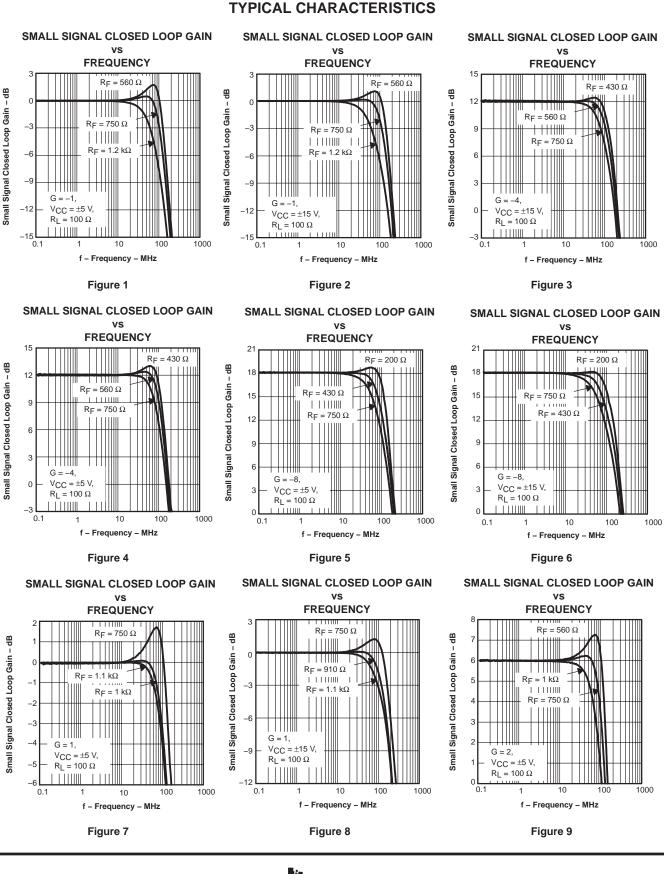
electrical characteristics over recommended operating free-air temperature range, T_A = 25°C, V_{CC} = ±15 V, R_F = 750 Ω , R_L = 100 Ω , GND = 0 V (unless otherwise noted) (continued)

power supply

	PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT	
			$T_A = 25^{\circ}C$		4.4	5.5		
	Quiescent current (ner emplifier)	$V_{CC} = \pm 5 V$	$V_{CC} = \pm 5 V$ $T_A = full range$	$T_A = full range$			6	
ICC	Quiescent current (per amplifier)		$T_A = 25^{\circ}C$		4.9	6.5	mA	
		$V_{CC} = \pm 15 V$	$T_A = full range$			7.5		
			$T_A = 25^{\circ}C$	53	60			
		$V_{CC} = \pm 5 V$	$T_A = full range$	50			15	
PSRR	Power supply rejection ratio		$T_A = 25^{\circ}C$	68	74		dB	
		$V_{CC} = \pm 15 V$	$T_A = $ full range	66				

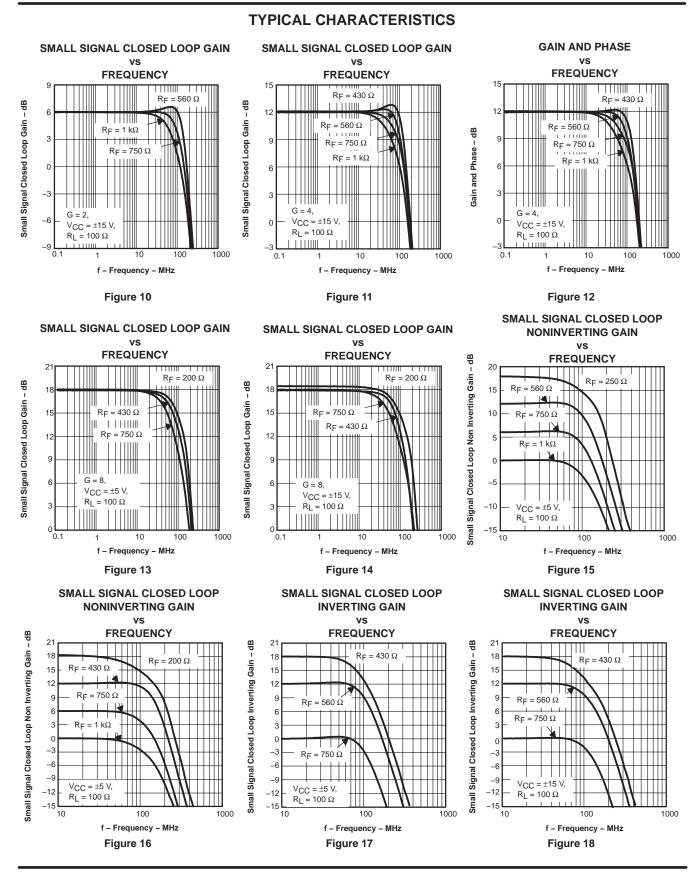
shutdown characteristics (THS3115 only)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ICC(SHDN)	Shutdown quiescent current (per channel)	V_{GND} = 0 V, V_{CC} = ±5 V, ±15 V		0.3	0.45	mA
t _{DIS}	Disable time (see Note 3)	$V_{CC} = \pm 15 V$		200		ns
tEN	Enable time (see Note 3)	$V_{CC} = \pm 15 V$		300		ns
IIL(SHDN)	Shutdown pin input bias current for power up	$V_{CC} = \pm 5 \text{ V}, \pm 15 \text{ V}, \text{ V}_{(SHDN)} = 0 \text{ V}$		18	25	μΑ
IIH(SHDN)	Shutdown pin input bias current for power down	$V_{CC} = \pm 5 \text{ V}, \pm 15 \text{ V}, V_{(SHDN)} = 3.3 \text{ V}$		110	130	μΑ

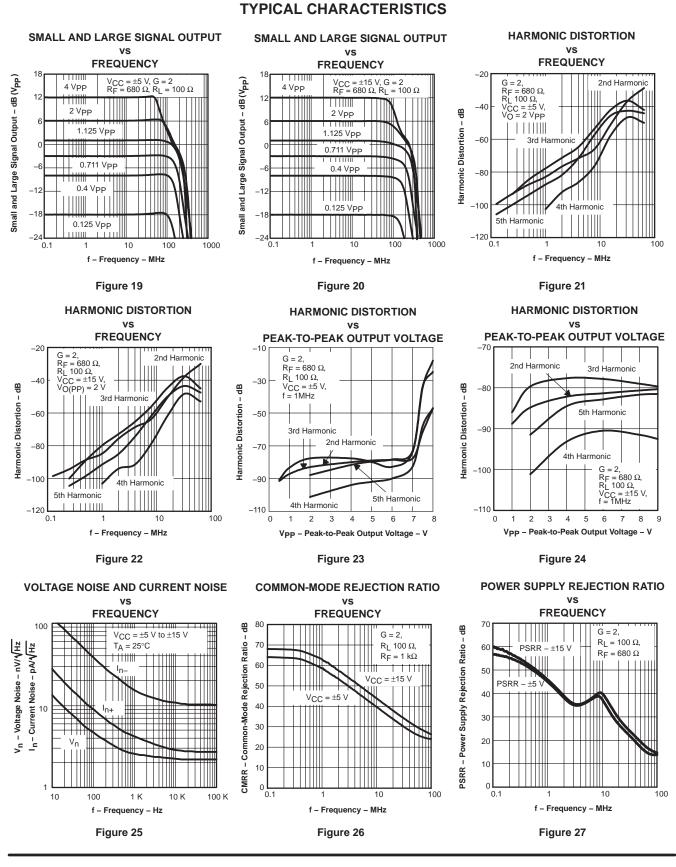

NOTE 3: Disable/enable time is defined as the time from when the shutdown signal is applied to the SHDN pin to when the supply current has reached half of its final value.

TYPICAL CHARACTERISTICS Table of Graphs

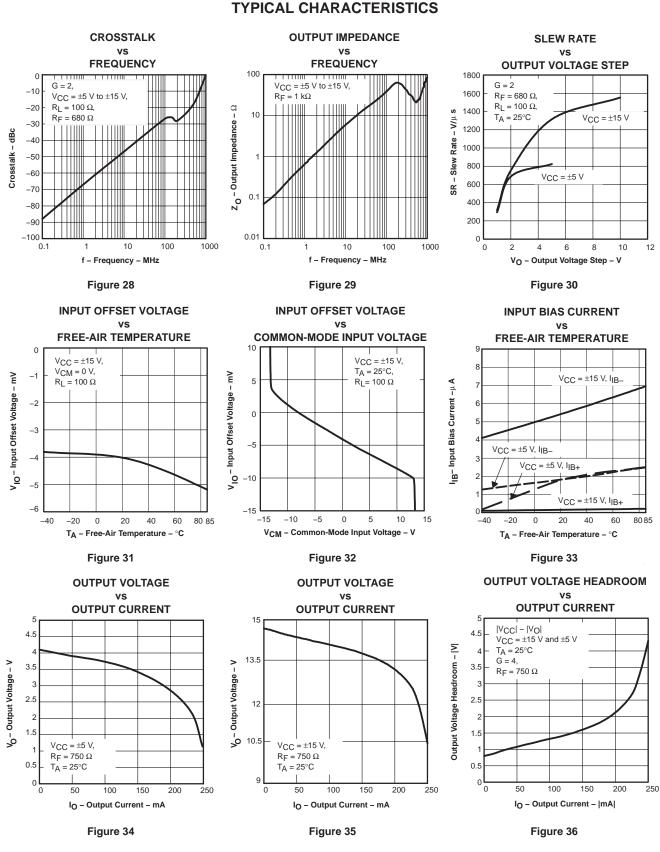
			FIGURE
	Small signal closed loop gain	vs Frequency	1 – 11, 13, 14
	Gain and phase	vs Frequency	12
	Small signal closed loop noninverting gain	vs Frequency	15, 16
	Small signal closed loop inverting gain	vs Frequency	17, 18
	Small and large signal output	vs Frequency	19, 20
		vs Frequency	21, 22
	Harmonic distortion	vs Peak-to-peak output voltage	23, 24
V _n , I _n	Voltage noise and current noise	vs Frequency	25
CMRR	Common-mode rejection ratio	vs Frequency	26
PSRR	Power supply rejection ratio	vs Frequency	27
	Crosstalk	vs Frequency	28
Z _O	Output impedance	vs Frequency	29
SR	Slew rate	vs Output voltage step	30
		vs Free-air temperature	31
VIO	Input offset voltage	vs Common-mode input voltage	32
IB	Input bias current	vs Free-air temperature	33
VO	Output voltage	vs Output current	34, 35
	Output voltage headroom	vs Output current	36
ICC	Supply current (per channel)	vs Supply voltage	37
	Shutdown response		38



SLOS385 - SEPTEMBER 2001

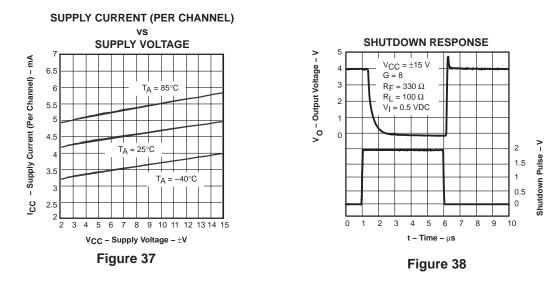


SLOS385 - SEPTEMBER 2001



SLOS385 - SEPTEMBER 2001

SLOS385 - SEPTEMBER 2001


INSTRUMENTS

www.ti.com

L

SLOS385 - SEPTEMBER 2001

TYPICAL CHARACTERISTICS

TEXAS INSTRUMENTS www.ti.com

28-Aug-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
THS3112CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3112CDDA	ACTIVE	SO Power PAD	DDA	8	75	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM
THS3112CDDAG3	ACTIVE	SO Power PAD	DDA	8	75	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM
THS3112CDDAR	ACTIVE	SO Power PAD	DDA	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM
THS3112CDDARG3	ACTIVE	SO Power PAD	DDA	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM
THS3112CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3112CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3112CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3112ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3112IDDA	ACTIVE	SO Power PAD	DDA	8	75	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM
THS3112IDDAG3	ACTIVE	SO Power PAD	DDA	8	75	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM
THS3112IDDAR	ACTIVE	SO Power PAD	DDA	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM
THS3112IDDARG3	ACTIVE	SO Power PAD	DDA	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM
THS3112IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3115CD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3115CDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3115CPWP	ACTIVE	HTSSOP	PWP	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
THS3115CPWPG4	ACTIVE	HTSSOP	PWP	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
THS3115CPWPR	ACTIVE	HTSSOP	PWP	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
THS3115CPWPRG4	ACTIVE	HTSSOP	PWP	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
THS3115ID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
THS3115IDG4	ACTIVE	SOIC	D	14	50	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
						no Sb/Br)		
THS3115IPWP	ACTIVE	HTSSOP	PWP	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
THS3115IPWPG4	ACTIVE	HTSSOP	PWP	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
THS3115IPWPR	ACTIVE	HTSSOP	PWP	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
THS3115IPWPRG4	ACTIVE	HTSSOP	PWP	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

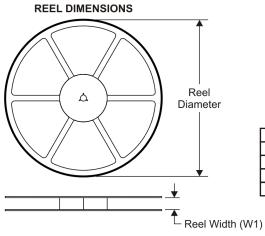
OBSOLETE: TI has discontinued the production of the device.

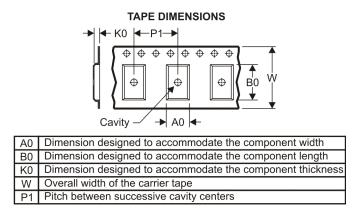
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

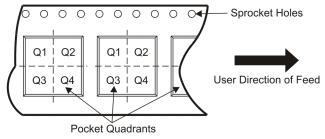
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

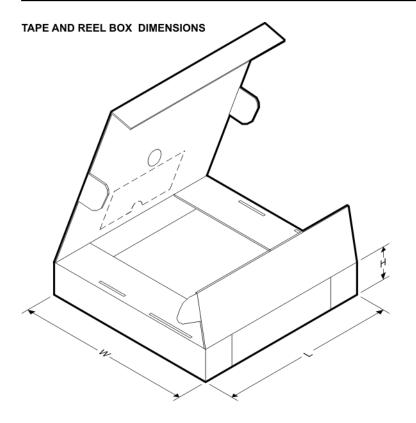

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

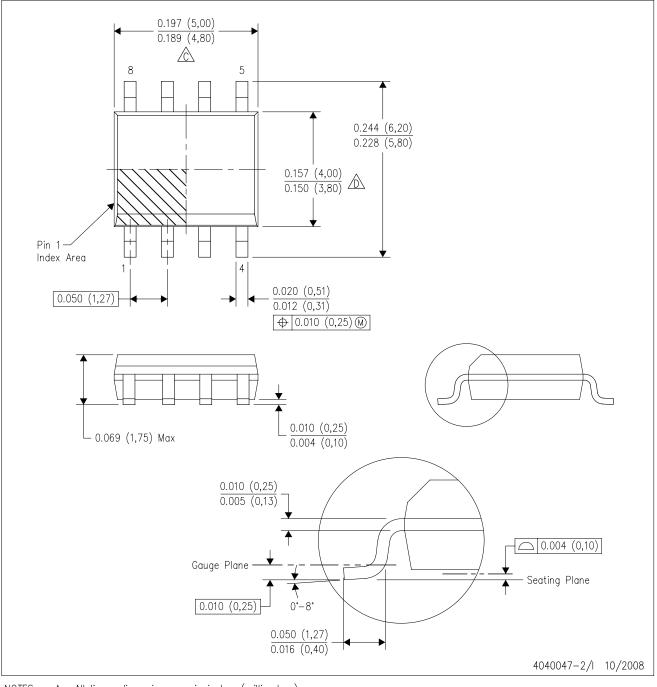
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
THS3112CDDAR	SO Power PAD	DDA	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
THS3112CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
THS3112IDDAR	SO Power PAD	DDA	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
THS3115CPWPR	HTSSOP	PWP	14	2000	330.0	12.4	6.67	5.4	1.6	8.0	12.0	Q1
THS3115IPWPR	HTSSOP	PWP	14	2000	330.0	12.4	6.67	5.4	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

9-Aug-2008



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
THS3112CDDAR	SO PowerPAD	DDA	8	2500	346.0	346.0	29.0
THS3112CDR	SOIC	D	8	2500	346.0	346.0	29.0
THS3112IDDAR	SO PowerPAD	DDA	8	2500	346.0	346.0	29.0
THS3115CPWPR	HTSSOP	PWP	14	2000	346.0	346.0	29.0
THS3115IPWPR	HTSSOP	PWP	14	2000	346.0	346.0	29.0

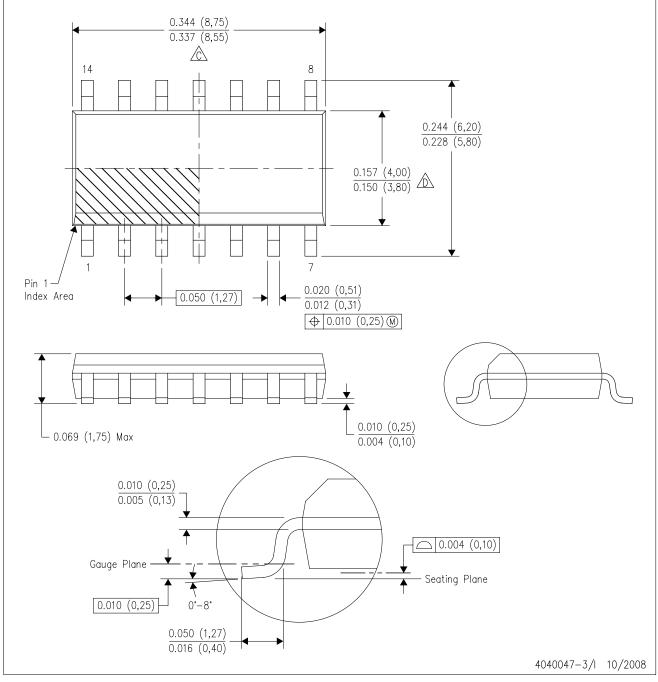
D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.


Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.

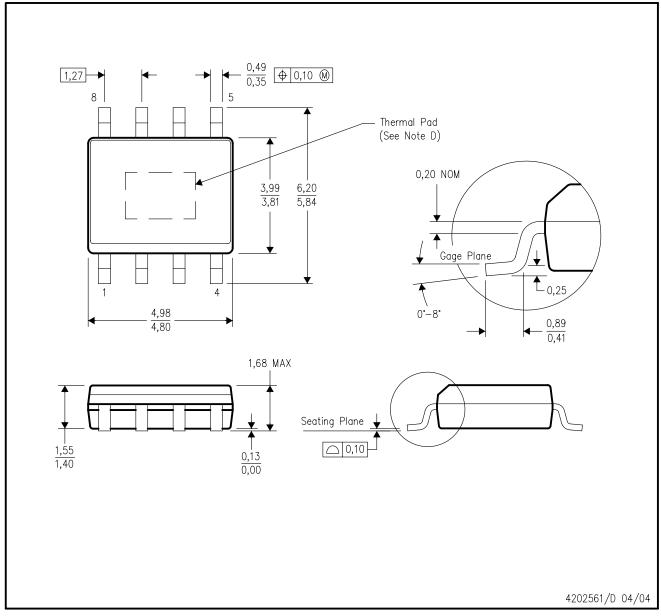
E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.


Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.

E. Reference JEDEC MS-012 variation AB.

DDA (R-PDSO-G8)

PowerPAD[™] PLASTIC SMALL-OUTLINE PACKAGE

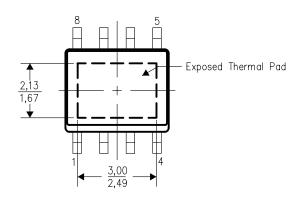
NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com.

PowerPAD is a trademark of Texas Instruments.

THERMAL PAD MECHANICAL DATA

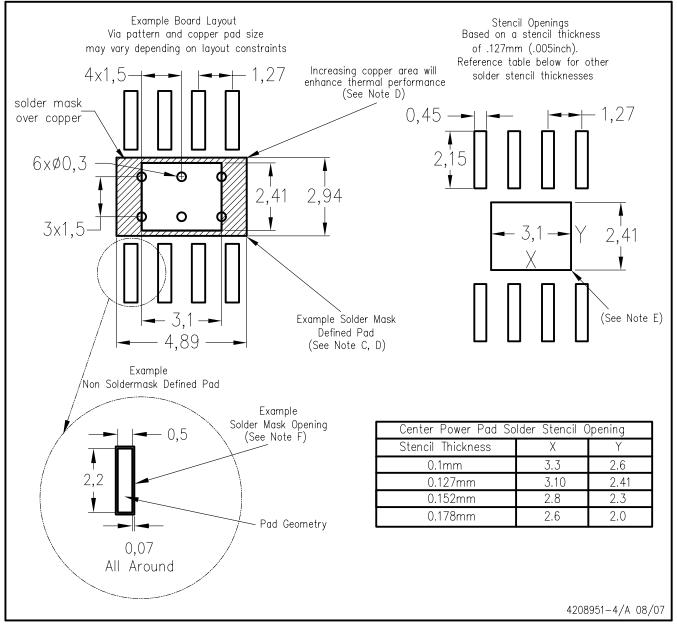

DDA (R-PDSO-G8)

THERMAL INFORMATION

This PowerPAD[™] package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

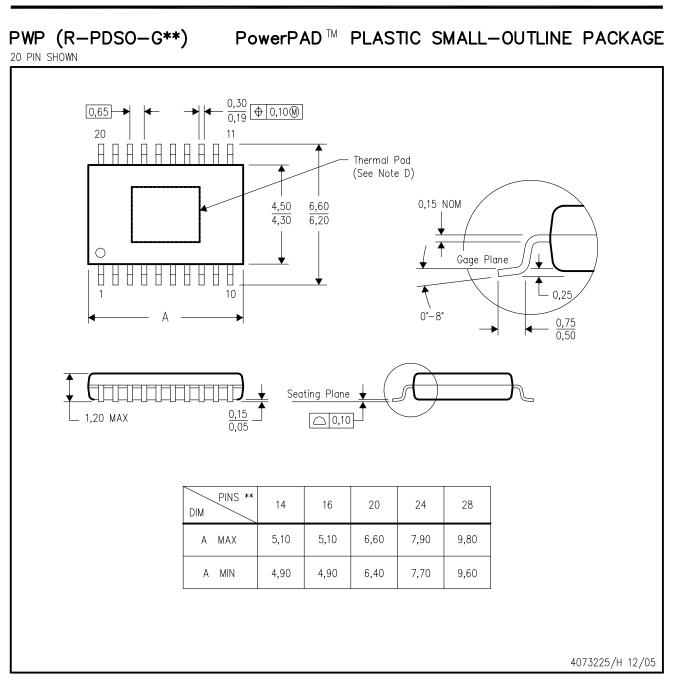
The exposed thermal pad dimensions for this package are shown in the following illustration.


Top View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

LAND PATTERN


DDA (R-PDSO-G8) PowerPAD™

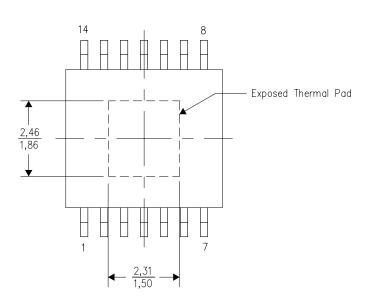
NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. PowerPAD is a trademark of Texas Instruments.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com.
- E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.

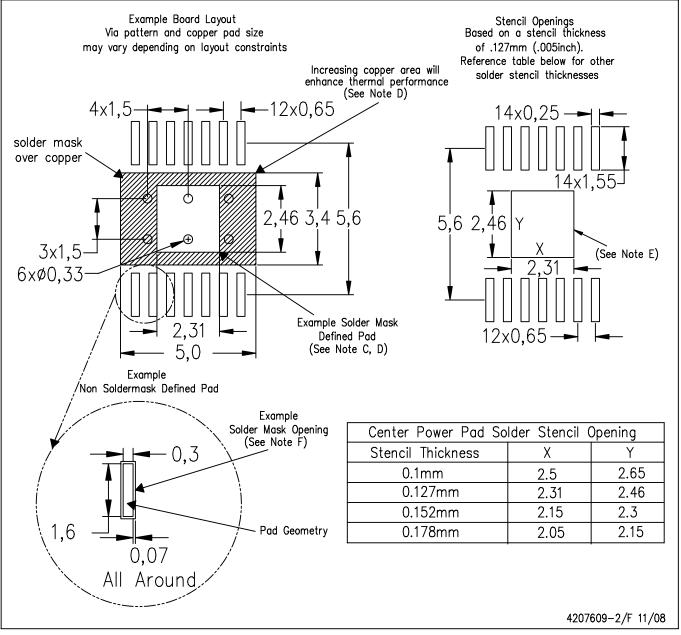


THERMAL INFORMATION

This PowerPAD[™] package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.


Top View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

LAND PATTERN

PWP (R-PDSO-G14) PowerPAD™

NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated